Preserving linguistic and cultural heritage of the Tuvan ethnos in the digital era

Authors

DOI:

https://doi.org/10.25178/nit.2024.4.12

Keywords:

Tuvan language; artificial intelligence; machine translation; neural network; language model; digital presence; machine learning

Abstract

This article presents an analysis of effective strategies for preserving and studying the Tuvan language through the application of methods and technologies such as corpus linguistics, artificial intelligence, and crowdsourcing. The paper examines the development process of educational and communicative applications utilizing neural networks, as well as the integration of language community-created projects into national initiatives for preserving and developing the languages of Russia's ethnic groups.

The study investigates the digital presence of Tuvan culture and language in generative artificial intelligence systems, including experiments with large language models (GPT-4, Google Gemini, Claude AI) and multimodal technologies, which demonstrated varying levels of representation. The authors also conduct a SWOT analysis of Tuvan linguistic and cultural heritage in the digital age, identifying strengths such as automated material processing and new archival capabilities, as well as weaknesses, threats, and opportunities associated with technological developments and human factors.

The primary conclusion, based on positive trends, suggests that combining traditional methods with cutting-edge technologies can play a crucial role in preserving Tuvan language and culture for future generations.

References

Bitkeeva, A. N. and Tsybenova, Ch. S. (2022) Chronicle of the Tuvan language shift in the Republic of Tuva. New Research of Tuva, no. 4, pp. 6–27. (In Russ.). DOI: https://doi.org/10.25178/nit.2022.4.1

Borgoiakova, T. G. and Bitkeeva, A. N. (2023) The Tuvan component of the bilingual space or reflections on the strategy of state support of the Tuvan language. New Research of Tuva, no. 4, pp. 290–300. (In Russ.). DOI: https://doi.org/10.25178/nit.2023.4.20

Golovnev, A. V., Belorussova, S. Yu. and Kisser T. S. (2021) Virtual ethnicity and cyberethnography. St. Petersburg, MAE RAN. 280 p. (In Russ.).

Gumbol'dt, V. fon (1984) On the difference in the structure of human languages and its influence on the spiritual development of mankind. In: Gumbol'dt, V. fon. Selected works on linguistics. Moscow, Progress. 400 p. Pp. 37–297. (In Russ.).

Dongak, V. S. and Mongush, D. Sh. (2021) Tuvan Ethnicity as an Object of Research. Bulletin of the Kalmyk Scientific Center of the RAS, no. 1, pp. 146–172. (In Russ.). DOI: https://doi.org/10.22162/2587-6503-2021-1-17-146-172

Lamazhaa, Ch. K. (2021) Social Culture of Tuvans and Online Space. New Research of Tuva, no. 2, pp. 115–129. (In Russ.). DOI: https://doi.org/10.25178/nit.2021.2.10

Lamazhaa, Ch. K., Mainy, Sh. B. and Kuzhuget, Sh. Yu. (2024) Tuvan Family Photo Album: Social Practices of Creation and Storage. RUDN Journal of Russian History, no. 23 (1), pp. 86–97. (In Russ.). DOI: https://doi.org/10.22363/2312-8674-2024-23-1-86-97

Novikova, M. L. and Novikov, F. N. (2024) Using artificial intelligence to develop a machine translation system and teaching resources in the Tuvan language. New Research of Tuva, 2024, no. 1, pp. 6–17. (In Russ.). DOI: https://doi.org/10.25178/nit.2024.1.1

Ondar, Ch. G., Dongak, V. S. and Mongush, D. Sh. (2023) The Tuvan language on the Internet: Representation, problems and prospects. New Research of Tuva, no. 1, pp. 186–207. (In Russ.). DOI: https://doi.org/10.25178/nit.2023.1.11

Papyn, A. S. (2010) Tuvan keyboard layout. New Research of Tuva, no. 1, pp. 19–25. (In Russ.).

Seliverstova, E. I. (2022) Binary structures in Tuvan proverbs as a manifestation of the nationally marked vision of the world. New Research of Tuva, no. 1, pp. 115–130. (In Russ.). DOI: https://doi.org/10.25178/nit.2022.1.8

Altundaş, U. (2023) A Visual Semiotic Analysis of Schoolbooks in the Tuvan Language. Sibirica, issue 22(3), pp. 57–86. DOI: https://doi.org/10.3167/sib.2023.220304

Duan, X. and Noirid, S. (2023) Analyzing the Dynamics of Ethnic Cultural Inheritance in Yunnan's Higher Education: A SWOT Analysis and Strategic Countermeasures in Local University Management. Journal of Namibian Studies: History Politics Culture, vol. 33, pp. 6412–6428. DOI: https://doi.org/10.59670/vhp09x94

Jeong, C. (2023) Generative AI service implementation using LLM application architecture: based on RAG model and LangChain framework. Journal of Intelligence and Information Systems, issue 29(4), pp. 129–164. DOI: https://doi.org/10.13088/jiis.2023.29.4.129

Hu, W., Xu, Y., Li, Y., Li, W., Chen, Z. and Tu, Z. (2024) Bliva: A simple multimodal LLM for better handling of text-rich visual questions. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 3, pp. 2256–2264. DOI: DOI: https://doi.org/10.1609/aaai.v38i3.27999

Littell, P., Joanis, E., Pine, A., Tessier, M., Daines, D. H. and Torkornoo, D. (2022) Readalong studio: Practical zero-shot text-speech alignment for indigenous language audiobooks. Proceedings of the 1st Annual Meeting of the ELRA/ISCA Special Interest Group on Under-Resourced Languages, pp. 23–32. DOI: https://doi.org/10.48440/2022.sigul-1.4

Meighan, P. J. (2021) Decolonizing the digital landscape: The role of technology in Indigenous language revitalization. AlterNative: An International Journal of Indigenous Peoples, issue 17(3), pp. 397–405. DOI: DOI: https://doi.org/10.1177/11771801211024312

McIvor, O. (2020) Indigenous language revitalization and applied linguistics: Parallel histories, shared futures? Annual Review of Applied Linguistics, issue 40, pp. 78–96. DOI: https://doi.org/10.1017/S026719052000010X

Ranathunga, S., Lee, E. S. A., Prifti Skenduli, M., Shekhar, R., Alam, M. and Kaur, R. (2023) Neural machine translation for low-resource languages: A survey. ACM Computing Surveys, issue 55(11), pp. 1–37. DOI: https://doi.org/10.1145/3554735

Udoinwang, D. E. (2022) The ‘Digital Natives’ and the Crossroads of Indigenous Languages, Literatures and Identities. AKSU Journal of English, issue 4, pp. 175–188. DOI: https://doi.org/10.4314/aksujel.v4i1.12

Viaut, A. (2020) De la relation entre variantes et standard dans les procédures de revitalisation des langues minoritaires. Les Cahiers du GEPE, issue 12, pp. 1–14. DOI: https://doi.org/10.4000/gepe.1234

Zhu, H., Dai, D. W., Brandt, A., Chen, G., Ferri, G., Hazel, S., Jenks, C., Jones, R., O'Regan, J. and Suzuki, Sh. (2024) Exploring AI for intercultural communication: Open conversation. Applied Linguistics Review, pp. 1–16. DOI: https://doi.org/10.1515/applirev-2024-0186

Published

29.11.2024

How to Cite

Новикова М. Л., Новиков Ф. Н. Сохранение языкового и культурного наследия тувинского этноса в цифровую эпоху // Новые исследования Тувы. 2024, № 4. С. 173-187. DOI: https://doi.org/10.25178/nit.2024.4.12

For citation:
Novikova M. L. and Novikov F. N. Preserving linguistic and cultural heritage of the Tuvan ethnos in the digital era. New Research of Tuva, 2024, no. 4, pp. 173-187. (In Russ.). DOI: https://doi.org/10.25178/nit.2024.4.12

Issue

Section

Tuva yesterday, today, tomorrow

Author Biographies

Marina L. Novikova, RUDN University

Doctor of Philology, Professor, Russian Language and Cultural Studies Department, Russian Language Institute, RUDN University.

Postal address: 10, bldg. 3 Miklukho-Maklaya St., 117198, Moscow, Russia.

Email: novikova-ml@rudn.ru

Filipp N. Novikov, RUDN University

Candidate of Philology, Associate Professor, Law Institute Department of Foreign Languages, RUDN University.

Postal address: 6 Miklukho-Maklaya St., 117198, Moscow, Russia.

Email: novikov_fn@pfur.ru